Ward法 (Ward's method)

凝集型階層的クラスタリングの一種. 各対象が \(m\)次元の属性ベクトル \(\mathbf{x}_i=(x_{i1},x_{i2},\ldots,x_{im})\) で表現されたデータを扱う. 次のエラーの増加分を最小化するようなクラスタを逐次的に併合する. \[d(C_1,C_2)=\mathrm{E}(C_1\cup C_2)-\mathrm{E}(C_1)-\mathrm{E}(C_2)\] ただし,クラスタ Ci の中心を \(\bar{\mathbf{x}}_i\) として \[\mathrm{E}(C_i)=\sum_{\mathbf{x}\in C_i} {(\mathbf{x}-\bar{\mathbf{x}}_i)}^2\] 群平均法と同様に,単リンク法完全リンク法より実データでは直観に沿ったクラスタが得られることが多い.

-- しましま

関連項目

リンク集

関連文献


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2010-02-11 (木) 16:11:27 (2488d)