訓練サンプル集合 \(X\) が与えられたときの, パラメータ \(\theta\) の事後分布 \(\Pr[\theta|X]\) を最大にする値をパラメータの推定値とする方法. \[\hat{\theta}=\arg\max_{\theta} \Pr[\theta|X]\]
パラメータが与えられたときの条件付分布のモデル \(\Pr[X|\theta]\) と,パラメータの事前分布 \(\Pr[\theta]\) を与えれば,ベイズの定理により次式のようにパラメータの事後分布は計算できる. \[\Pr[\theta|X]=\frac{\Pr[X|\theta]\Pr[\theta]}{\int\Pr[X|\theta]\Pr[\theta]d\theta}\]
-- しましま