大数の法則 (law of large numbers)

統計における推定において最も基本となる法則. サンプル数を無限大にしたとき,サンプルの平均が母集団の期待値に収束する. 厳密には大数の強法則大数の弱法則がある.

大数の弱法則

平均 \(\mu\) の同分布に従う独立な確率変数 \(X_1,X_2,\ldots,X_n\) について \(\bar{X}_n=(X_1+X_2+\cdots+X_n)/n\) を定義. このとき,\(\bar{X}_n\) は,\(\mu\) に確率収束する.すなわち,任意の正数 \(\epsilon\) について次式が成立: \[\lim_{n\rightarrow\infty} \Pr\Bigl[|\bar{X}_n-\mu|\ge\epsilon\Bigr]=0\]

大数の強法則

上記の \(\bar{X}_n\) が \(\mu\) へ概収束する: \[\bar{X}_n\overset{A.S.}{\longrightarrow}\mu\] すなわち \[\Pr\Bigl[\lim_{n\rightarrow\infty} \bar{X}_n=\mu\Bigr]=1\]

関連項目

リンク集

関連文献


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2010-02-11 (木) 16:12:45 (2489d)