行列 \(A\) の\(i\)行\(j\)列の要素を \(\{a_{ij}\}\) とする.行列式は次式 \[\sum\pm a_{1p_1} a_{2p_2}\cdots a_{np_n}\] 列の添え字を並べた \( p_1 p_2 \cdots p_n\) の全ての順列について和をとる. 和の項の符号は \( p_1 p_2 \cdots p_n\) が奇順列なら負,偶順列なら正をとる. 順列 \( 1 2 \cdots n \) の隣接する要素を置換して,\(p_1 p_2 \cdots p_n \) に変換する置換の回数が奇数なら奇順列,偶数なら偶順列.
行列 \(A\) の行列式は \(|A|\) や \(\mathrm{det}(A)\) と記す.
-- しましま